Files
performance-tests/opencl_add_cpu.c
2025-11-18 12:55:09 +01:00

181 lines
6.3 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <CL/cl.h>
#include <sys/time.h>
#define ARRAY_SIZE 15000576 // 100 million items
#define LOCAL_SIZE 256 // Tunable work-group size
const char *kernelSource =
"__kernel void add(__global const float *a, __global const float *b, __global float *c) { "
" int i = get_global_id(0); "
" c[i] = a[i] + b[i]; "
"} ";
double get_time() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec + tv.tv_usec * 1e-6;
}
int main() {
float *a = (float*)malloc(sizeof(float) * ARRAY_SIZE);
float *b = (float*)malloc(sizeof(float) * ARRAY_SIZE);
float *c = (float*)malloc(sizeof(float) * ARRAY_SIZE);
// Initialize arrays
for (int i = 0; i < ARRAY_SIZE; i++) {
a[i] = i;
b[i] = i * 2;
}
// Get all platforms
cl_uint platformCount;
clGetPlatformIDs(0, NULL, &platformCount);
cl_platform_id *platforms = (cl_platform_id *)malloc(platformCount * sizeof(cl_platform_id));
clGetPlatformIDs(platformCount, platforms, NULL);
// Find the POCL platform
cl_platform_id poclPlatform = NULL;
for (cl_uint i = 0; i < platformCount; i++) {
char platformName[128];
clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, 128, platformName, NULL);
if (strstr(platformName, "Portable Computing Language") != NULL) {
poclPlatform = platforms[i];
break;
}
}
if (poclPlatform == NULL) {
printf("POCL platform not found!\n");
return 1;
}
// Get the CPU device from the POCL platform
cl_device_id cpuDevice = NULL;
cl_uint deviceCount;
cl_int ret = clGetDeviceIDs(poclPlatform, CL_DEVICE_TYPE_CPU, 1, &cpuDevice, &deviceCount);
if (ret != CL_SUCCESS || deviceCount == 0) {
printf("No CPU device found on POCL platform!\n");
return 1;
}
// Create an OpenCL context
cl_context context = clCreateContext(NULL, 1, &cpuDevice, NULL, NULL, &ret);
if (ret != CL_SUCCESS) {
printf("Error creating context: %d\n", ret);
return 1;
}
// Create a command queue
cl_command_queue command_queue = clCreateCommandQueueWithProperties(context, cpuDevice, NULL, &ret);
if (ret != CL_SUCCESS) {
printf("Error creating command queue: %d\n", ret);
return 1;
}
// Create memory buffers on the device
cl_mem a_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY, ARRAY_SIZE * sizeof(float), NULL, &ret);
cl_mem b_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY, ARRAY_SIZE * sizeof(float), NULL, &ret);
cl_mem c_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY, ARRAY_SIZE * sizeof(float), NULL, &ret);
if (ret != CL_SUCCESS) {
printf("Error creating memory buffers: %d\n", ret);
return 1;
}
// Time data transfer to device
double start = get_time();
ret = clEnqueueWriteBuffer(command_queue, a_mem_obj, CL_TRUE, 0, ARRAY_SIZE * sizeof(float), a, 0, NULL, NULL);
ret |= clEnqueueWriteBuffer(command_queue, b_mem_obj, CL_TRUE, 0, ARRAY_SIZE * sizeof(float), b, 0, NULL, NULL);
double transfer_to_device_time = get_time() - start;
if (ret != CL_SUCCESS) {
printf("Error writing to memory buffers: %d\n", ret);
return 1;
}
// Create a program from the kernel source
cl_program program = clCreateProgramWithSource(context, 1, (const char **)&kernelSource, NULL, &ret);
if (ret != CL_SUCCESS) {
printf("Error creating program: %d\n", ret);
return 1;
}
// Build the program
ret = clBuildProgram(program, 1, &cpuDevice, NULL, NULL, NULL);
if (ret != CL_SUCCESS) {
size_t log_size;
clGetProgramBuildInfo(program, cpuDevice, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *log = (char *)malloc(log_size);
clGetProgramBuildInfo(program, cpuDevice, CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
printf("Kernel compilation error:\n%s\n", log);
free(log);
return 1;
}
// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "add", &ret);
if (ret != CL_SUCCESS) {
printf("Error creating kernel: %d\n", ret);
return 1;
}
// Set the arguments of the kernel
ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&a_mem_obj);
ret |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&b_mem_obj);
ret |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&c_mem_obj);
if (ret != CL_SUCCESS) {
printf("Error setting kernel arguments: %d\n", ret);
return 1;
}
// Time kernel execution
start = get_time();
size_t global_item_size = ARRAY_SIZE;
size_t local_item_size = LOCAL_SIZE;
ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, &global_item_size, &local_item_size, 0, NULL, NULL);
clFinish(command_queue);
double kernel_time = get_time() - start;
if (ret != CL_SUCCESS) {
printf("Error executing kernel: %d\n", ret);
return 1;
}
// Time data transfer back to host
start = get_time();
ret = clEnqueueReadBuffer(command_queue, c_mem_obj, CL_TRUE, 0, ARRAY_SIZE * sizeof(float), c, 0, NULL, NULL);
double transfer_to_host_time = get_time() - start;
if (ret != CL_SUCCESS) {
printf("Error reading from memory buffer: %d\n", ret);
return 1;
}
// Print timing results
printf("Data transfer to device: %.3f ms\n", transfer_to_device_time * 1000);
printf("Kernel execution time: %.3f ms\n", kernel_time * 1000);
printf("Data transfer to host: %.3f ms\n", transfer_to_host_time * 1000);
printf("Total time: %.3f ms\n", (transfer_to_device_time + kernel_time + transfer_to_host_time) * 1000);
// Print a sample of the result
for (int i = 0; i < 10; i++) {
printf("c[%d] = %f\n", i, c[i]);
}
// Clean up
clFlush(command_queue);
clFinish(command_queue);
clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseMemObject(a_mem_obj);
clReleaseMemObject(b_mem_obj);
clReleaseMemObject(c_mem_obj);
clReleaseCommandQueue(command_queue);
clReleaseContext(context);
free(a);
free(b);
free(c);
free(platforms);
return 0;
}