First commit

This commit is contained in:
2025-11-17 17:18:43 +01:00
parent 2286a3b782
commit bca5ef911b
905 changed files with 950521 additions and 2 deletions

View File

@@ -0,0 +1,351 @@
struct deferredLightData {
vec3 position;
vec3 direction;
vec3 color;
float intensity;
float inverseFalloff;
float length;
float radius;
};
struct deferredMaterialData {
vec3 normal;
vec3 baseColor;
vec3 diffuse;
vec3 position;
vec3 vertex;
vec3 tangent;
vec3 specularReflectance;
float reflectance;
float metallic;
float roughness;
float clearCoat;
float clearCoatRoughness;
float clearCoatThickness;
vec3 clearCoatColor;
float geometricRoughness;
float ambientOcclusion;
float shadowOcclusion;
float refracted_NoV;
float index;
float alpha;
};
float D_GGX(float NoH, float a) {
float a2 = a * a;
float f = (NoH * a2 - NoH) * NoH + 1.0;
return a2 / (PI * f * f);
}
float D_GGX_Anisotropy(float NoH, vec3 h, vec3 x, vec3 y, float ax, float ay) {
float XoH = dot(x, h);
float YoH = dot(y, h);
float d = XoH * XoH * (ax * ax) + YoH * YoH * (ay * ay) + NoH * NoH;
return (ax * ay) / (PI * d * d);
}
vec3 F_Schlick(float VoH, vec3 specularReflectance, float f90) {
return specularReflectance + (vec3(f90) - specularReflectance) * pow(1.0 - VoH, 5.0);
}
float V_SmithGGXCorrelated(float NoV, float NoL, float a) {
float a2 = a * a;
float GGXL = NoV * sqrt((-NoL * a2 + NoL) * NoL + a2);
float GGXV = NoL * sqrt((-NoV * a2 + NoV) * NoV + a2);
return 0.5 / (GGXV + GGXL);
}
float Fd_Lambert() {
return 1.0 / PI;
}
float F_Schlick_Scalar(float VoH, float specularReflectance, float f90) {
return specularReflectance + (f90 - specularReflectance) * pow(1.0 - VoH, 5.0);
}
float square(float v) {
return v * v;
}
vec3 irradianceSH(vec3 n) {
return
vec3(0.754553530212464, 0.748541695286661, 0.790922541330174)
+ vec3(-0.083855089181764, 0.092536341322488, 0.322767327275582) * (n.y)
+ vec3(0.308154551673257, 0.366799355358085, 0.466705760819624) * (n.z)
+ vec3(-0.188887618191928, -0.277403749518126, -0.377844811540716) * (n.x)
+ vec3(-0.252782448589491, -0.316051613736677, -0.396141020484574) * (n.y * n.x)
+ vec3(0.071362454444021, 0.159789075773366, 0.29059362717571) * (n.y * n.z)
+ vec3(-0.031040420617065, -0.031141089772695, -0.031044001883204) * (3.0 * n.z * n.z - 1.0)
+ vec3(-0.161001896026477, -0.203649521035777, -0.246641086569566) * (n.z * n.x)
+ vec3(0.045710934605387, 0.048121779682969, 0.046326375668417) * (n.x * n.x - n.y * n.y);
}
vec2 prefilteredDFGKaris(float NoV, float roughness) {
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4( 1.0, 0.0425, 1.040, -0.040);
vec4 r = roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
return vec2(-1.04, 1.04) * a004 + r.zw;
}
float sRGBtoLinear(float c) {
return (c <= 0.04045) ? c / 12.92 : pow((c + 0.055) / 1.055, 2.4);
}
vec3 sRGBtoLinear(vec3 c) {
return vec3(sRGBtoLinear(c.r), sRGBtoLinear(c.g), sRGBtoLinear(c.b));
}
vec3 decodeEnvironmentMap(vec4 c) {
return c.rgb; // or use sRGBtoLinear(c.rgb) if you want linear correction
}
float getSquareFalloffAttenuation(float distanceSquare, float inverseFalloff) {
float factor = distanceSquare * inverseFalloff;
float smoothFactor = max(1.0 - factor * factor, 0.0);
return smoothFactor * smoothFactor;
}
float getPhotometricAttenuation(vec3 lightToPos, vec3 lightDir) {
return 1.0;
}
float getAngleAttenuation(vec3 l, vec3 lightDir, float lightLength, float lightRadius) {
float cd = dot(lightDir, l);
float attenuation = clamp(cd * lightLength + lightRadius, 0.0, 1.0);
return attenuation * attenuation;
}
vec3 beerLambert(float NoV, float NoL, vec3 alpha, float d) {
return exp(alpha * -(d * ((NoL + NoV) / max(NoL * NoV, 1e-3))));
}
vec3 fixCubemapLookup(vec3 v, float lod) {
vec3 r = abs(v);
float M = max(max(v.x, v.y), v.z);
float scale = 1.0 - exp2(lod) * (1.0 / 256.0);
if (v.x != M) v.x *= scale;
if (v.y != M) v.y *= scale;
if (v.z != M) v.z *= scale;
return v;
}
vec3 evaluateSpecularIBL(vec3 r, float roughness) {
float lod = 5.0 * roughness;
r = fixCubemapLookup(r, lod);
return decodeEnvironmentMap(texture(reflectionSampler, r, lod)) * 1.8;
}
float computeSpecularambientOcclusion(float NoV, float ambientOcclusion, float roughness) {
return clamp(pow(NoV + ambientOcclusion, exp2(-16.0 * roughness - 1.0)) - 1.0 + ambientOcclusion, 0.0, 1.0);
}
vec3 getSpecularDominantDirection(vec3 n, vec3 r, float roughness) {
float s = 1.0 - roughness;
return mix(n, r, s * (sqrt(s) + roughness));
}
vec3 indirectLight(deferredMaterialData materialData) {
vec3 normal = materialData.normal;
vec3 vertex = materialData.vertex;
float roughness = materialData.roughness;
float NoV = max(dot(normal, vertex), 0.0);
#if ANISOTROPY == 1
vec3 t = normalize(materialData.tangent);
vec3 b = normalize(cross(t, normal));
vec3 anisotropicTangent = cross(-vertex, b);
vec3 anisotropicNormal = cross(anisotropicTangent, b);
vec3 bentNormal = normalize(mix(normal, anisotropicNormal, anisotropy));
vec3 r = reflect(vertex, bentNormal);
#else
vec3 r = reflect(-vertex, normal);
r = getSpecularDominantDirection(normal, r, roughness * roughness);
#endif
float NoR = max(dot(r, normal), 0.0);
vec3 indirectSpecular = evaluateSpecularIBL(reflect(vertex, normal), roughness);
vec2 env = prefilteredDFGKaris(NoV, materialData.roughness);
vec3 specularColor = materialData.specularReflectance * env.x + env.y * (1.0 - materialData.clearCoat) *
clamp(dot(materialData.specularReflectance, vec3(50.0 * 0.33)), 0.0, 1.0);
vec3 indirectDiffuse = max(irradianceSH(normal), 0.0) * Fd_Lambert();
float ambientOcclusionFade = clamp(dot(normalize(normal), vertex), 0.0, 1.0);
float ambientOcclusion = mix(1.0, materialData.ambientOcclusion, ambientOcclusionFade);
indirectDiffuse *= ambientOcclusion;
indirectSpecular *= computeSpecularambientOcclusion(NoV, ambientOcclusion, materialData.roughness);
float Fcc = F_Schlick_Scalar(NoV, 0.04, 1.0);
indirectSpecular = mix(indirectSpecular, vec3(Fcc), materialData.clearCoat);
return indirectDiffuse * materialData.baseColor + indirectSpecular;
}
vec3 directLight( deferredMaterialData materialData, deferredLightData lightData ) {
vec3 n = materialData.normal;
vec3 v = materialData.vertex;
vec3 l;
float NoL;
float energy;
float attenuation;
vec3 lightDir = normalize(lightData.direction);
float linearRoughness = materialData.roughness * materialData.roughness;
vec3 r = reflect(-v, n);
if (lightType == 1.0) {
l = -lightDir;
// Disc area light
vec3 sunDir = -lightDir;
float e = sin(radians(0.53));
float d = cos(radians(0.53));
float DoR = dot(sunDir, r);
vec3 s = r - DoR * sunDir;
l = DoR < d ? normalize(d * sunDir + normalize(s) * e) : r;
NoL = dot(n, l);
energy = 1.0;
attenuation = 1.0;
} else if (lightType == 0.0) {
vec3 posToLight = lightData.position - materialData.position;
float distanceSquare = dot(posToLight, posToLight);
l = normalize(posToLight);
NoL = dot(n, l);
energy = 50.0;
attenuation = getSquareFalloffAttenuation( distanceSquare, lightData.inverseFalloff );
attenuation *= 1.0 / max(distanceSquare, 1e-4);
attenuation *= getPhotometricAttenuation(-l, lightDir);
// attenuation *= getAngleAttenuation( l, -lightDir, lightData.length, lightData.radius );
}
vec3 h = normalize(v + l);
NoL = clamp(NoL, 0.0, 1.0);
float NoV = abs(dot(n, v)) + 1e-5;
float NoH = clamp(dot(n, h), 0.0, 1.0);
float LoH = clamp(dot(l, h), 0.0, 1.0);
// specular BRDF
#if ANISOTROPY == 1
vec3 t = normalize(v_tangent.xyz);
vec3 b = normalize(cross(t, n));
float aspect = inversesqrt(1.0 - anisotropy * 0.9);
float ax = 1.0 / (linearRoughness * aspect);
float ay = aspect / linearRoughness;
float D = D_GGX_Anisotropy(NoH, h, t, b, ax, ay);
#else
float D = D_GGX(NoH, linearRoughness);
#endif
vec3 F = F_Schlick(LoH, materialData.specularReflectance, clamp(dot(materialData.specularReflectance, vec3(50.0 * 0.33)), 0.0, 1.0));
float V = V_SmithGGXCorrelated(NoV, NoL, linearRoughness);
vec3 Fr = (D * V) * F;
// diffuse BRDF
vec3 Fd = materialData.diffuse * Fd_Lambert();// * 3.6
// clear coat
float linearClearCoatRoughness = materialData.clearCoatRoughness * materialData.clearCoatRoughness;
float Dcc = D_GGX(NoH, linearClearCoatRoughness);
float Fcc = F_Schlick_Scalar(LoH, 0.04, 1.0) * materialData.clearCoat;
float Vcc = V_SmithGGXCorrelated(NoV, NoL, linearClearCoatRoughness);
float FrCC = Dcc * Vcc * Fcc;
vec3 refracted_l = -refract(l, n, 1.0);
float refracted_NoL = clamp(dot(n, refracted_l), 0.0, 1.0);
vec3 clearCoatAbsorption = mix(vec3(1.0),
beerLambert(materialData.refracted_NoV, refracted_NoL, materialData.clearCoatColor, materialData.clearCoatThickness),
materialData.clearCoat);
// direct contribution
vec3 color = (attenuation * NoL) * lightData.color * lightData.intensity * energy *
((Fd + Fr) * (1.0 - Fcc) * clearCoatAbsorption + FrCC);
#if TRANSLUCENT_MATERIAL == 1
vec3 tL = l + n * translucencyDistortion;
float tD = exp2(clamp(dot(v, -tL), 0.0, 1.0) * translucencyPower - translucencyPower) * translucencyScale;
vec3 tT = attenuation * lightData.intensity * (tD + translucencyAmbient) * texture(translucencyThicknessMap, outUV).r;
color.rgb += Fd * lightData.color * tT;
#endif
// micro-shadowing
float aperture = 2.0 * materialData.ambientOcclusion * materialData.ambientOcclusion * materialData.shadowOcclusion;
float microShadow = clamp(abs(dot(l, n)) + aperture - 1.0, 0.0, 1.0);
color.rgb *= microShadow;
return color;
}
vec4 physically_based_shading( deferredMaterialData materialData, deferredLightData lightData ) {
//deferredLightData lightData;
materialData.diffuse = (1.0 - materialData.metallic) * materialData.baseColor;
// Geometric AA
vec3 ndFdx = dFdx( materialData.normal );
vec3 ndFdy = dFdy( materialData.normal );
materialData.geometricRoughness = pow( max( dot(ndFdx, ndFdx), dot(ndFdy, ndFdy) ), 0.333);
materialData.roughness = max(materialData.roughness, materialData.geometricRoughness);
materialData.specularReflectance = 0.16 *
materialData.reflectance * materialData.reflectance * (1.0 - materialData.metallic) +
materialData.baseColor * materialData.metallic;
materialData.clearCoatRoughness = max( mix(0.089, 0.6, materialData.clearCoatRoughness), materialData.geometricRoughness);
materialData.vertex = normalize( cameraPosition - materialData.position ); // v
vec3 refracted_vertex = -refract(materialData.vertex, materialData.normal, 1.0);
materialData.refracted_NoV = clamp(dot(materialData.normal, refracted_vertex), 0.0, 1.0);
float alpha = 1.0;
// indirect lighting
vec3 color = indirectLight( materialData );
color *= environmentLuminance;
color += directLight( materialData, lightData );
return vec4(color, alpha);
}