First commit

This commit is contained in:
2025-11-17 17:18:43 +01:00
parent 2286a3b782
commit bca5ef911b
905 changed files with 950521 additions and 2 deletions

432
shaders/old/deferred.shader Executable file
View File

@@ -0,0 +1,432 @@
#version 300 es
precision highp float;
in vec2 uv;
in vec3 position;
out vec2 v_uv;
uniform mat4 viewProjection;
void main(void) {
v_uv = uv;
gl_Position = viewProjection * vec4(position, 1.0);
}
// #keplerEngine - Split
#version 300 es
precision highp float;
#define PI 3.14159265358979323846
#define ANISOTROPY 0
#define USE_IES_PROFILE 0
#define TRANSPARENT_MATERIAL 0
#define TRANSLUCENT_MATERIAL 0
#define CUBEMAP_EDGE_FIXUP 0
uniform float lightType;
uniform vec3 lightGeometry;
uniform samplerCube reflectionSampler;
uniform float clearCoat;
uniform vec3 clearCoatColor;
uniform float clearCoatThickness;
uniform float clearCoatRoughness;
uniform vec3 lightDirection;
uniform float attenuation;
uniform float SourceRadius;
uniform float SourceLength;
uniform float environmentLuminance;
uniform vec3 lightPosition;
uniform vec3 lightColor;
uniform float lightIntensity;
uniform float clearCoatIOR;
uniform vec3 cameraPosition;
uniform float metallic;
#include "physically_based_shading.shader"
#define TEXTURED_MATERIAL 1
out vec4 fragmentColor;
in vec2 v_uv;
uniform float reflectance;
uniform float anisotropy;
uniform float roughness;
uniform sampler2D diffuseSampler;
uniform sampler2D normalSampler;
uniform sampler2D tangentSampler;
uniform sampler2D infoSampler;
uniform sampler2D ambientOcclusionSampler;
uniform sampler2D materialSampler;
uniform sampler2D shadowNoiseSampler;
uniform sampler2D shadowDepthSampler;
uniform float luma_z;
uniform float far;
uniform mat4 InvProjection;
uniform mat4 lightViewProjection;
uniform vec2 screenSize;
uniform float shadowBias;
const float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)
const float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)
const vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );
const vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );
const float ShiftRight8 = 1. / 256.;
vec4 packDepthToRGBA( const in float v ) {
vec4 r = vec4( fract( v * PackFactors ), v );
r.yzw -= r.xyz * ShiftRight8; // tidy overflow
return r * PackUpscale;
}
float unpackRGBAToDepth( const in vec4 v ) {
return dot( v, UnpackFactors );
}
float shadow_sample(sampler2D depthMap, vec2 coord)
{
return ( texture(depthMap, coord.xy).x );//DecodeFloatRGBA() ;
}
vec2 DoubleSampleRotated(sampler2D depthMap, vec4 p, vec4 rotMatr, vec4 kernel) {
vec4 rotatedOff;
rotatedOff = rotMatr.xyzw * kernel.xxww +
rotMatr.zwxy * kernel.yyzz;
vec4 fetchPos = p.xyxy + rotatedOff;// + rotatedOff
vec2 result;
result.x = shadow_sample(depthMap, fetchPos.xy);
result.y = shadow_sample(depthMap, fetchPos.zw);
return result;
}
float PCF(sampler2D depthMap, vec4 p, vec2 randDirTC, float depth)
{
vec2 kernelRadius = vec2(4.0);
vec4 irreg_kernel_2d[8];
irreg_kernel_2d[0] = vec4(-0.556641,-0.037109,-0.654297, 0.111328);
irreg_kernel_2d[1] = vec4(0.173828,0.111328,0.064453, -0.359375);
irreg_kernel_2d[2] = vec4(0.001953,0.082031,-0.060547, 0.078125);
irreg_kernel_2d[3] = vec4(0.220703,-0.359375,-0.062500, 0.001953);
irreg_kernel_2d[4] = vec4(0.242188,0.126953,-0.250000, -0.140625);
irreg_kernel_2d[5] = vec4(0.070313,-0.025391,0.148438, 0.082031);
irreg_kernel_2d[6] = vec4(-0.078125,0.013672,-0.314453, 0.013672);
irreg_kernel_2d[7] = vec4(0.117188,-0.140625,-0.199219, 0.117188);
vec2 vInvShadowMapWH = vec2(1.0 / 2048.0);
const int kernelSize = 8;
mediump float P_Z = depth; // p.z;
vec4 p0 = vec4(p.xyz, 1.0);
mediump vec2 rotScale = vec2(kernelRadius.y * 2.0);
float shadowTest = 0.0;
#define KERNEL_STEP_SIZE 2
vec2 rotSample = 2.0 * texture(shadowDepthSampler, randDirTC.xy).xy - 1.0;
rotSample.xy = normalize(rotSample.xy);
rotSample.xy *= (kernelRadius.xy * vInvShadowMapWH.xy);
vec4 rot = vec4(rotSample.x, -rotSample.y, rotSample.y, rotSample.x);
const int kernelOffset = 0;
for(int i=kernelOffset; i<kernelSize; i+=KERNEL_STEP_SIZE) // Loop over taps
{
mediump vec4 sampleDepth = vec4(0.0);
vec4 irr = irreg_kernel_2d[i+0];
sampleDepth.xy = DoubleSampleRotated(depthMap, p0, rot, irr);
sampleDepth.zw = DoubleSampleRotated(depthMap, p0, rot, irreg_kernel_2d[i+1]);
mediump vec4 InShadow;
InShadow.x = ( P_Z < sampleDepth.x + shadowBias ) ? 1. : 0.0;
InShadow.y = ( P_Z < sampleDepth.y + shadowBias ) ? 1. : 0.0;
InShadow.z = ( P_Z < sampleDepth.z + shadowBias ) ? 1. : 0.0;
InShadow.w = ( P_Z < sampleDepth.w + shadowBias ) ? 1. : 0.0;
const mediump float quality = 8.0; // 8 == high
const mediump float fInvSamplNum = (1.0 / quality);
shadowTest += dot(InShadow, vec4(fInvSamplNum));
}
return shadowTest;
}
float DecodeFloatRGBA( vec4 rgba ) {
return (rgba).x;
//return dot( rgba, vec4(1.0, 1.0 / 255.0, 1.0 / 65025.0, 1.0 / 160581375.0) );
}
float poissonPCFmultitap(vec4 projCoords, float shadowDepth, vec2 uv)
{
const mediump float step = 1.0 - 1.0 / 8.0;
const mediump float fScale = 0.025; // 0.025
mediump float n = 0.0;
mediump vec3 directions[8];
float vSampleScale = 1.0 / 2048.0;
directions[0] = normalize(vec3( 1.0, 1.0, 1.0))*fScale*(n+=step);
directions[1] = normalize(vec3(-1.0,-1.0,-1.0))*fScale*(n+=step);
directions[2] = normalize(vec3(-1.0,-1.0, 1.0))*fScale*(n+=step);
directions[3] = normalize(vec3(-1.0, 1.0,-1.0))*fScale*(n+=step);
directions[4] = normalize(vec3(-1.0, 1.0 ,1.0))*fScale*(n+=step);
directions[5] = normalize(vec3( 1.0,-1.0,-1.0))*fScale*(n+=step);
directions[6] = normalize(vec3( 1.0,-1.0, 1.0))*fScale*(n+=step);
directions[7] = normalize(vec3( 1.0, 1.0,-1.0))*fScale*(n+=step);
mediump vec3 randomSample = texture(shadowNoiseSampler, vec2(64.0, 64.0) * uv.xy / 4.0).xyz * 2.0 - 1.0;
float sum = 0.0;
for( int i = 0; i < 4; i++ ) {
vec3 sampler = reflect(directions[0], randomSample) * vSampleScale;
float pixelDepth = DecodeFloatRGBA( texture(shadowDepthSampler, projCoords.xy+ sampler.xy ) ) ; // + sampler.xy + sampler.z
if( pixelDepth + shadowBias > shadowDepth) {
sum += 1.0;
} else {
sum += 0.0;
}
}
return sum;
}
float linestep(float min, float max, float value) {
return clamp((value - min) / (max - min), 0., 1.);
}
float reduceBleeding(float p_max, float amount) {
return linestep(amount, 1.0, p_max);
}
float ChebyshevUpperBound(vec2 moments, float distance) {
if (distance <= moments.x)
return 1.0;
float g_minVariance = .0007;
float variance = moments.y - (moments.x*moments.x);
variance = max(variance,g_minVariance);
float d = distance - moments.x;
float p_max = variance / (variance + d*d);
return reduceBleeding(p_max, shadowBias);
}
float calculateShadowOcclusion( vec3 worldPosition, vec2 uv ) {
vec4 projCoords = lightViewProjection * vec4(worldPosition, 1.0) ;
float shadowDepth = length( lightPosition - worldPosition ) / 99.0;
projCoords.xy /= projCoords.w;
projCoords = 0.51 * projCoords + 0.5;
vec4 moments = texture( shadowDepthSampler, projCoords.xy );
mediump vec2 randomSample = texture(shadowNoiseSampler, vec2(1024.) * uv / 64.0).xy * 2.0 - 1.0;
float outFrustum = 0.0;
if(projCoords.x < 0.0 || projCoords.x > 1.0) {
return 0.0;
}
if(projCoords.y < 0.0 || projCoords.y > 1.0) {
return 0.0;
}
if(projCoords.z < 1.0) {
return 0.0;
}
return ChebyshevUpperBound(moments.xy, shadowDepth);
return poissonPCFmultitap(projCoords, shadowDepth, uv);
//return PCF( shadowDepthSampler, projCoords, randomSample, shadowDepth );
}
vec3 sampleReflection( vec3 r ) {
return texture(reflectionSampler, r).xyz;
}
vec3 cubemapReflection( deferredMaterialData materialData ) {
vec3 viewDir = ( cameraPosition - materialData.position );
vec3 reflectionVector = reflect(-viewDir, normalize( materialData.normal ));
vec3 reflectionSample = sampleReflection( reflectionVector );
return reflectionSample;
}
const float gamma = 2.2;
float toLinear(float v) {
return pow(v, gamma);
}
vec2 toLinear(vec2 v) {
return pow(v, vec2(gamma));
}
vec3 toLinear(vec3 v) {
return pow(v, vec3(gamma));
}
vec4 toLinear(vec4 v) {
return vec4(toLinear(v.rgb), v.a);
}
vec3 HDR_ACES(const vec3 x) {
// Narkowicz 2015, "ACES Filmic Tone Mapping Curve"
const float a = 2.51;
const float b = 0.03;
const float c = 2.43;
const float d = 0.59;
const float e = 0.14;
return (x * (a * x + b)) / (x * (c * x + d) + e);
}
vec3 tonemap(const vec3 x) {
return HDR_ACES(x);
}
float linearToSRGB(float c) {
return (c <= 0.0031308) ? c * 12.92 : (pow(abs(c), 1.0 / 2.4) * 1.055) - 0.055;
}
vec3 linearToSRGB(vec3 c) {
return vec3(linearToSRGB(c.r), linearToSRGB(c.g), linearToSRGB(c.b));
}
void main() {
deferredMaterialData materialData;
float gamma = 2.2;
vec4 normalDepth = texture(normalSampler, v_uv);
vec4 diffuseRoughness = texture(diffuseSampler, v_uv);
vec4 positionMaterialIndex = texture(infoSampler, v_uv);
vec4 depthNormal = texture(normalSampler, v_uv);
vec4 shadowAmbientOcclusion = texture(ambientOcclusionSampler, v_uv);
materialData.ambientOcclusion = shadowAmbientOcclusion.x;
materialData.normal = normalize( depthNormal.xyz );
materialData.baseColor = sRGBtoLinear(diffuseRoughness.rgb);
materialData.position = positionMaterialIndex.xyz;
materialData.index = positionMaterialIndex.w;
materialData.roughness = diffuseRoughness.w;
materialData.alpha = 1.0;
materialData.shadowOcclusion = shadowAmbientOcclusion.y; //calculateShadowOcclusion( materialData.position, v_uv );
materialData.metallic = metallic;
materialData.reflectance = reflectance;
//materialData.tangent = tangent;
//materialData.shadowOcclusion = 1.0;
//materialData.baseColor = vec3(1.0);
vec4 color = physically_based_shading( materialData );
float exposure = 1.7;
color.rgb *= exposure;
vec3 finalRender = color.rgb;// + diffuse * .2
// For fxaa
float luma = sqrt( dot(color.rgb, vec3(0.299, 0.587, 0.114)) );
if(luma_z == 1.0)
//if(v_uv.x < 0.5)
fragmentColor = vec4(linearToSRGB(tonemap(color.rgb)), luma);
//else
// fragmentColor = vec4(vec3(materialData.ambientOcclusion), 1.0);
//fragmentColor = vec4(linearToSRGB(tonemap(color.rgb)), 1.0);
if(materialData.index == 100.0) {
vec3 cubeReflectionSample = cubemapReflection( materialData );
fragmentColor = vec4( cubeReflectionSample, 1.0 );
}
}