import Vector3 from "./Vector3.js"; export default class Matrix4 { static lookAt( eye, target, up ) { const zAxis = Vector3.normalize( Vector3.subtract( eye, target ) ); const xAxis = Vector3.normalize( Vector3.cross( up, zAxis ) ); const yAxis = Vector3.cross( zAxis, xAxis ); return new Float32Array([ xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, -Vector3.dot( xAxis, eye ), -Vector3.dot( yAxis, eye ), -Vector3.dot( zAxis, eye ), 1, ]); } static getColumn( matrix, index ) { const i = index * 4; return new Vector3( matrix[ i + 0 ], matrix[ i + 1 ], matrix[ i + 2 ] ); } static createProjectionMatrix( camera, canvas ) { return Matrix4.perspective( camera.fovRadians, canvas.width / canvas.height, camera.near, camera.far ); } static invert( m ) { const out = new Float32Array(16); const m00 = m[0], m01 = m[1], m02 = m[2], m03 = m[3]; const m10 = m[4], m11 = m[5], m12 = m[6], m13 = m[7]; const m20 = m[8], m21 = m[9], m22 = m[10], m23 = m[11]; const m30 = m[12], m31 = m[13], m32 = m[14], m33 = m[15]; const a0 = m00 * m11 - m01 * m10; const a1 = m00 * m12 - m02 * m10; const a2 = m00 * m13 - m03 * m10; const a3 = m01 * m12 - m02 * m11; const a4 = m01 * m13 - m03 * m11; const a5 = m02 * m13 - m03 * m12; const b0 = m20 * m31 - m21 * m30; const b1 = m20 * m32 - m22 * m30; const b2 = m20 * m33 - m23 * m30; const b3 = m21 * m32 - m22 * m31; const b4 = m21 * m33 - m23 * m31; const b5 = m22 * m33 - m23 * m32; const det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0; if (det === 0) return null; const invDet = 1 / det; out[0] = ( m11 * b5 - m12 * b4 + m13 * b3) * invDet; out[1] = (-m01 * b5 + m02 * b4 - m03 * b3) * invDet; out[2] = ( m31 * a5 - m32 * a4 + m33 * a3) * invDet; out[3] = (-m21 * a5 + m22 * a4 - m23 * a3) * invDet; out[4] = (-m10 * b5 + m12 * b2 - m13 * b1) * invDet; out[5] = ( m00 * b5 - m02 * b2 + m03 * b1) * invDet; out[6] = (-m30 * a5 + m32 * a2 - m33 * a1) * invDet; out[7] = ( m20 * a5 - m22 * a2 + m23 * a1) * invDet; out[8] = ( m10 * b4 - m11 * b2 + m13 * b0) * invDet; out[9] = (-m00 * b4 + m01 * b2 - m03 * b0) * invDet; out[10] = ( m30 * a4 - m31 * a2 + m33 * a0) * invDet; out[11] = (-m20 * a4 + m21 * a2 - m23 * a0) * invDet; out[12] = (-m10 * b3 + m11 * b1 - m12 * b0) * invDet; out[13] = ( m00 * b3 - m01 * b1 + m02 * b0) * invDet; out[14] = (-m30 * a3 + m31 * a1 - m32 * a0) * invDet; out[15] = ( m20 * a3 - m21 * a1 + m22 * a0) * invDet; return out; } static perspective( fovRadians, aspect, near, far ) { const f = 1.0 / Math.tan( fovRadians / 2 ); const nf = 1 / ( near - far ); return new Float32Array([ f / aspect, 0, 0, 0, 0, f, 0, 0, 0, 0, (far + near) * nf, -1, 0, 0, (2 * far * near) * nf, 0, ]); } static multiply( a, b ) { const out = new Float32Array(16); for ( let col = 0; col < 4; col++ ) { for ( let row = 0; row < 4; row++ ) { let sum = 0; for ( let k = 0; k < 4; k++ ) { // a is column-major: element at col k, row row => a[k*4 + row] // b is column-major: element at col col, row k => b[col*4 + k] sum += a[k * 4 + row] * b[col * 4 + k]; } out[col * 4 + row] = sum; } } return out; } }